课题 二次函数y=ax2的图象(一) 一、教学目的1.使学生初步理解二次函数的概念。2.使学生会用描点法画二次函数y=ax2的图象。3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。 二、教学重点、难点重点:对二次函数概念的初步理解。难点:会用描点法画二次函数y=ax2的图象。 三、教学过程复习提问1.在下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=x/4;(2)y=4/x;(3)y=2x5;(4)y=x22。2.什么是一无二次方程?3.怎样用找点法画函数的图象? 新课1.由具体问题引出二次函数的定义。(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?解:(1)函数解析式是S=πR2;(2)函数析式是S=30L―L2;(3)函数解析式是y=50(1+x)2,即 y=50x2+100x+50。由以上三例启发学生归纳出:(1)函数解析式均为整式;(2)处变量的最高次数是2。我们说三个式子都表示的是二次函数。一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。2.画二次函数y=x2的图象。按照描点法分三步画图:(1)列表 ∵x可取任意实数,∴以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;(2)描点 按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;(3)边线 用平滑曲线顺次连接各点,即得所求y=x2的图象。注意两点:(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在3到3这个区间的一部分。而图象在x>3或x<3的区间是无限延伸的。(2)所画的图象是近似的。3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?――我们 1与1之间每隔0.2的间距取x值表和图1314。按课本P118内容讲解。4.引入抛物线的概念。关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。 小结1.二次函数的定义。(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。2.二次函数y=x2的图象。(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。 补充例题下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?(1)y=23x2; (2)y=x(x4);(3)y=1/2x23x1; (4)y=1/4x2+3x8;(5)y=7x(1x)+4x2; (6)y=(x6)(6+x)。作业:P122中A组1,2,3。 四、教学注意问题1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:(1)y=x2的图象的图象有什么特点。(答:具有对称性。)(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)
数学教案_二次函数y=ax2的图象(一)一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!
标签:
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系邮箱:yuname@163.com 我们将配合处理!
原文地址:数学教案_二次函数y=ax2的图象(一)_教学教案发布于2021-10-22