教学目标:

  1、使学生进一步理解二次函数的基本性质;

  2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.

  3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.

  教学重点:初步理解数形结合的数学思想

  教学难点:初步理解数形结合的数学思想

  教学用具:微机

  教学方法:探究式、小组合作学习

  教学过程

  例1、已知:抛物线y=x2_(m2_1)x_2m2_2

  ⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

  ⑵m取什么实数时,两交点间距离最短?是多少?

  解:

   △=(m2_1)2+4(2m2+2)

   =m4_2m2+1+8m2+8

   =m4+6m2+9

   =(m2+3)2

   m2≥0

   ∴m2+3>0

   ∴△>0 

   ∴抛物线与x轴有两个交点

  问题:为什么说当△>0时,抛物线y=ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)

  设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.

  数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)

  ∴

     这样交点问题就转化成求这个二元二次方程组的解.代入y=0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时,ax2+bx+c=0有两个不相等的实根.∴y=ax2+bx+c

  y=0

  有两个不等的实数解

  ∴抛物线与x轴交于两个不同的点.

  形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.

  设计意图:渗透解析几何的基本思想

  使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.

  

  转化成代数语言为:

     

  小结:第一种方法,根据解析几何的基本思想.将求曲线的交点问题,转化成求方程组的解的问题.

  第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.

  思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系.

  设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.

  ⑵m取什么实数时,两交点间距离最短?是多少?

  解:设二次函数与x轴的两交点为(x1,0),(x2,0)

  解法㈠由⑴可知m为任何实数时,都有△>0

  解①

   ∴ x1+x2=m2_1

   x1x2=_2(m2+1)

   ∴│x2_x1│=

   =

   =

   =

   =m2+3

   ∴当m=0时,两交点最小距离为3

  这里两交点间距离是m的函数

  设计意图:培养学生的问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:二次函数y=ax2+bx+c的图象初中三年级教案发布于2021-10-22

课件推荐