[课   题] §12.2 一元二次方程的解法(1)――直接开平方法[教学目的] 使学生掌握直接开平方法,并会解某些一元二次方程;使学生会解(x_a)2=b(b≥0)型的方程,为进一步学习公式法作好准备。[教学重点] 掌握直接开平方法,并会解某些一元二次方程。[教学难点] 会解(x_a)2=b(b≥0)型的方程。[教学关键] 会解(x_a)2=b(b≥0)型的方程,为进一步学习公式法作好准备。[教学用具] [教学形式] 讲练结合法。[教学用时] 45′×1 [教学过程][复习提问1、什么叫做整式方程?(方程两边都是关于未知数的整式,叫做整式方程。)2、什么样的方程叫做一元一次方程?什么样的方程叫做一元二次方程?(在整式方程中,只含一个未知数,并且未知数的最高次数是1,这样的方程叫做一元一次方程;在整式方程中,只含一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程。)3、说明一元一次方程与一元二次方程的相同点和不同点?(都是整式方程,并且都含有一个未知数,这是它们的相同点;它们的不同点是未知数的次数,一个是一次,一个是二次。)4、一元二次方程的一般形式是什么?其中a应具备什么条件?(一元二次方程的一般形式是:ax2+bx+c=0,其中a应不等于零。因为a=0,则方程ax2+bx+c=0就不是一元二次方程了。)5、x2_4=0是一元二次方程吗?其中二次项的系数、一次项的系数、常数项各是什么?(是。二次项系数是1、一次项系数是0、常数项是_4。)[讲解新课]我们来解方程:x2_4=0。先移项,得:x2=4。(这里,一个数x的平方等于4,这个数x叫做4的什么?――这个数x叫做4的平方根或二次方根;一个正数有几个平方根?――一个正数有两个平方根,它们互为相反数;求一个数的平方根的运算叫做什么?――叫做开平方。)上面的x2=4,实际上就是求4的平方根。因此,x=±即,x1=2,x2=_2。讲(或提问)到此,指出:这种解某些一元二次方程的方法叫做直接开平方法。提问:用直接开平方法解下列方程:1、x2_144=0;          2、x2_3=0;3、x2+16=0;            4、x2=0。(1、x1=12,x2=_12;2、x1=,x2=_;3、无解――负数没有平方根;4、x=0――0有一个平方根,它是0本身)。2 解方程:(x+3)2=2。说明与分析:此例要求解出方程的根,同时通过此例的学习也为进一步解公式法作准备。实际上,我们将用此例以及类似的题目推导出一元二次方程的另一解法――配方法。可以看出,原方程中x+3是2的平方根,解:x+3=±即:x1=_3+,或x2=_3_。∴ x1=_3+,x2=_3_。提问:解下列方程:1、(x+4)2=3;       2、(3x+1)2=_3。(1、x1=_4+,x2=_4_。2、无解。)[课堂练习]教科书第7页练习1,2题。[课堂小结]直接开平方法可解下列类型的一元二次方程:x2=b(b≥0);(x_a)2=b(b≥0)。根据平方根的定义,要特别注意:由于负数没有平方根,所以,上列两式中的b≥0,当b<0时,方程无解。[课外作业]教科书第15习题12.1A组第1,2题。对学有余力的学生可做B组第1题。 [板书设计]课题:      例题:辅助板书: [课后记]

通过本节课的学习,学生已掌握了一元二次方程的解法之一――直接开平方法,并能熟练地求出能应用直接开平方法解的一元二次方程的两个根,同时掌握了一元二次方程的解题步骤及书写格式。




§12.2一元二次方程的解法(1)――直接开平方法一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:§12.2一元二次方程的解法(1)――直接开平方法_教学教案发布于2021-10-22

课件推荐