[课 题] §12.2 一元二次方程的解法(2)――配方法[教学目的] 使学生掌握配方法的推导过程,能够熟练地进行配方;使学生会用配方法解数字系数的一元二次方程。[教学重点] 掌握配方法的推导过程,能够熟练地进行配方。[教学难点] 掌握配方法的推导过程,能够熟练地进行一元二次方程一般形式ax2+bx+c=0(a≠0)的配方。[教学关键] 会用配方法解数字系数的一元二次方程。[教学用具] [教学形式] 讲练结合法。[教学用时] 45′×1 [教学过程][复习提问] 1、在(x+3)2=2中,x+3与2的关系是什么?(x+3是2的平方根。)2、试将方程的左边展开、移项、合并同类项。(x2+6x+9=2,x2+6x+7=0。)[讲解新课]现在,我们来研究方程:x2+6x+7=0的解法。我们知道,方程:x2+6x+7=0是由方程:(x+3)2=2变形得到的,因此,要解方程:x2+6x+7=0应当如何变形?这里要求学生做尝试回答:要解方程:x2+6x+7=0,最好将其变形为:(x+3)2=2。这是因为,我们会用直接开平方法解方程:(x+3)2=2了。下面重点研究如何将方程:x2+6x+7=0,变形为:(x+3)2=2。这里,不是只研究这一道题解法的问题,而是注意启发学生找出一般性规律。将方程:x2+6x+7=0的常数项移到右边,并将一次项6x改写成2・x・3,得:x2+2・x・3=_7。由此可以看出,为使左边成为完全平方式,只需在方程两边都加上32,即:x2+2・x・3+32=_7+32,(x+3)2=2。解这个方程,得:x1=_3+,x2=_3_。随后提出:这种解一元二次方程的方法叫做配方法。很明显,掌握这种方法的关键是“配方”。上述引例以及列3,二次项系数都是1,而例4,二次项的系数不是1,这时,要将方程的两边都除以二次项的系数,就把该方程的二次项系数变成1了。这样,“配方”就容易了。让学生做练习:1、x2+6x+ =(x+ )2;(9,3)2、x2_5x+ =(x_ )2;(,)3、x2+x+ =(x+ )2;(,)例3 解方程:x2_4x_3=0。解:略。例4 解方程:2x2+3=7x。解:略。说明:在讲解完这两个例题之后,一方面是利用“配方法”求出一元二次方程的解,另一方面是通过求解过程使学生掌握“配方”的方法。讲解应突出重点,对容易出错的地主应给予较多的讲解。如例4的解方程:2x2+3=7x,在“分析”中指出,应先把这个方程化成一般形式:2x2_7x+3=0。其次,这个方程的二次项系数是2,为了便于配方,可把二次项系数化为1,为此,把方程的各项都除以2,并移项,得:x2_x=_;下一步应是配方。这里,一次项的系数是(_),它的一半的平方是(_)2。学生在这里容易出错。讲解时,应提醒学生注意。我们知道,配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法,而用公式法。但是,配方法是导出公式法――求根公式的关键,在以后的学习中,会常常用到配方法,所以掌握这个数学方法是重要的。[课堂练习]教科书第10页练习第1,2题。[课堂小结]这堂课我们主要学习了用配方法解数字系数的一元二次方程,配方的关键是:在方程的两边都加上一次项系数一半的平方。请同学们回去后,用配方法解一下关于x的方程:ax2+bx+c=0(a≠0)。(此题为下一课讲解作准备,可指定一些同学做,从中了解在公式推导过程中存在的问题。)[课外作业]教科书第15页习题12.1A组第3,4题。[板书设计]课题: 例题:辅助板书:
[课后记]通过本节课的学习,多数学生对配方法解一元二次方程基本掌握,但有一部分学生对一元二次方程一般式的配方法掌握的不好,希望课后多加练习。§12.2一元二次方程的解法(2)――配方法一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!
标签:
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系邮箱:yuname@163.com 我们将配合处理!
原文地址:§12.2一元二次方程的解法(2)――配方法_教学教案发布于2021-10-22