教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.

  1.平方差公式是由多项式乘法直接计算得出的:

  

  与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.

  2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.

  只要符合公式的结构特征,就可运用这一公式.例如

  在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.

 3.关于平方差公式的特征,在学习时应注意:

  (1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.

  (2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).

  (3)公式中的和可以是具体数,也可以是单项式或多项式.

  (4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.

  三、教法建议

  1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.

  2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即

  (a+b)(ab)=a2+ababb2=a2b2.

  这样得出平方差公式,并且把这类乘法的实质讲清楚了.

  3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(12x),

  (1+2x)(12x)=12(2x)2=14x2
  ↓↓↓↓ ↑ ↑


  (a+b)(a_b)=a2b2.

  这样,学生就能正确应用公式进行计算,不容易出差错.

  另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.

 

教学目标

  1.使学生理解和掌握平方差公式,并会用公式进行计算;

  2.注意培养学生分析、综合和抽象、概括以及运算能力.

  教学重点和难点

  重点:平方差公式的应用.

  难点:用公式的结构特征判断题目能否使用公式.

  教学过程设计

  一、师生共同研究平方差公式

  我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.

  让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:

  两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

  (当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)

  继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(ab)这种乘法,所以把(a+b)(ab)=a2b2作为公式,叫做乘法的平方差公式.

  在此基础上,让学生用语言叙述公式.

  二、运用举例 变式练习

  例1 计算(1+2x)(12x).

  解:(1+2x)(12x)

  =12(2x)2

  =14x2.

  教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.

  例2 计算(b2+2a3)(2a3b2).

  解:(b2+2a3)(2a3b2)

  =(2a3+b2)(2a3b2)

  =(2a3)2(b2)2

  =4a6b4.

  教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.

  课堂练习

  运用平方差公式计算:

  (l)(x+a)(xa);    (2)(m+n)(mn);

  (3)(a+3b)(a3b);   (4)(15y)(l+5y).

  例3 计算(4a1)(4a+1).

  让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

  解法1:(4a1)(4a+1)

  =[(4a+l)][(4al)]

  =(4a+1)(4al)

  =(4a)2l2

  =16a21.

  解法2:(4al)(4a+l)

  =(4a)2l

  =16a21.

  根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把4a看成一个数,把1看成另一个数,直接写出(4a)2l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.

  课堂练习

  1.口答下列各题:

  (l)(a+b)(a+b);    (2)(ab)(b+a);

  (3)(ab)(a+b);    (4)(ab)(ab).

  2.计算下列各题:

  (1)(4x5y)(4x+5y);  (2)(2x2+5)(2x25);

 

  教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.

  三、小结

  1.什么是平方差公式?

  2.运用公式要注意什么?

  (1)要符合公式特征才能运用平方差公式;

  (2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.

  四、作业

  1.运用平方差公式计算:

  (l)(x+2y)(x2y);      (2)(2a3b)(3b+2a);

  (3)(1+3x)(13x);     (4)(2b5)(2b5);

  (5)(2x3+15)(2x315);    (6)(0.3x0.l)(0.3x+l);
  

  2.计算:

  (1)(x+y)(xy)+(2x+y)(2x+y); (2)(2ab)(2a+b)(2b3a)(3a+2b);

  (3)x(x3)(x+7)(x7);    (4)(2x5)(x2)+(3x4)(3x+4).

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:平方差公式初中一年级教案发布于2021-10-22

课件推荐