再做一组练习(出示投影3)

  计算:(1),,;

  (2),,;

  (3),,.

  学生活动:学生在练习本上独立完成后,同桌交换,互相纠正.然后,教师引导学生纵向观察(1)题和(2)题的形式和计算结果有什么区别?中底数是_3,而题中,底数是3.因此,.可见,以负数作为底数时,这个负数必加括号,而不加括号的底数一定不是负数.

  师:哪位同学能用乘方的一般式说明这个问题呢?

  生:的底数是,表示个相乘,是的相反数,这就是与的区别.

  师:引导学生观察(3)题,与两者从意义上截然不同:

  ,而.因此,要特别注意:当底数是分数时,这个分数一定要加括号,不加括号的底数不是分数.计算带分数的乘方一般应化为假分数.

  【教法说明】同桌之间相互纠正,有时比师生之间的纠正效果会更好.通过学生实际计算、纠错,让他们自己体会到负数与分数的乘方要加括号.这样,学生自己获得的知识和方法,理解得更深刻,并能灵活运用.

  (三)变式训练,培养能力

  (出示投影4)

  计算:

  (1),,,,;

  (2),,,;

  (3),,,.

  【教法说明】练习题的设计分层次,既注重基础知识,又注重了能力的培养,组织课内练习,获取学生掌握知识的反馈信息,对于学生存在的问题及时回授.

  (四)课堂小结

  师:今天我们一起学习了有理数的乘方.有理数的乘方运算可以利用有理数的乘法运算来进行.乘方与乘法有联系也有区别:联系是乘方本质是乘法,区别是乘方中积的因数要相同.为了更好地理解这一点,我们看下面的对比:

  (出示投影5)

  作乘法运算看   作乘方运算看

  2×2×2=8    

  因数是2     底数是2

  因数的个数为3  指数是3

  积是8      幂是8

  【教法说明】小结揭示出乘方与乘法这两个知识点的联系,并找出它们之间的共同点和不同点,使学生将乘方知识与头脑中乘法的认识结构建立联系,从而形成新的知识体系.

  (五)思考题

  (出示投影6)

  1.3的平方是多少?_3的平方是多少?平方得9的数有几个?有没有平方得_9的有理数?

  2.已知,则.

  3.计算.

  【教法说明】这组题目是让学有余力的学生应有所追求,进一步激发学生探索的热情,有利于发展他们的数学才能.2题是非负数和有理数乘方两知识点的综合应用,有助于培养学生分析问题和解决问题的能力.3题向学生渗透分类讨论的思想.

  八、随堂练习

  1.判断题

  (1)中底数是,指数是2()

  (2)一个有理数的平方总是大于0的()

  (3)()

  (4)()

  (5)()

  (6)若,则()

  (7)当时,()

  (8)平方等于本身的数是0和1()

  2.填空题

  (1)的意义是__________________,结果为________________;

  (2)的意义是__________________,结果为________________;

  (3)若且,则;

  (4)若,则,,;

  (5)平方小于10的整数有__________个,其和为___________,积为___________.

  九、布置作业

  课本第113页4、5.

  十、板书设计

  


有理数的乘方一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:有理数的乘方_教学教案发布于2021-10-22

课件推荐