不等式的基本性质 教学目的掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。 教学过程师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?第一组:1+2=3;a+b=b+a; S=ab; 4+x=7. 第二组:7<5; 3+4>1+4; 2x≤6, a+2≥0;3≠4.生:第一组都是等式,第二组都是不等式。师:那么,什么叫做等式?什么叫做不等式?生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。师:在数学炽,我们用等号“=”来表示相等关系,用不等式号“〈”、“〉”或“≠”表示不等关系,其中“>”和“<”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。前面我们学过了等式,同学们还记得等式的性质吗?生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式。师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。练习1 (回答)用小于号“<”或大于号“>”填空。(1)7___4; (2)2____6; (3)3_____2; (4)4_____6练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?(3)两边都乘以(或都除以)(5),结果怎样?不等号的方向改变了吗?生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。师:有没有不同的意见?大家都同意他的看法吗?可能还有同学不放心,让我们再做一些试验。练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)2,看看不等号的方向是否改变: 7>4;2<6;3<2;4>6。师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。(让同学回答。)性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向 。(让同学回答。)现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。不等式的这三条基本性质,都可以用数学语言表达出来,先请一位同学说一说第一条基本性质。生:如果a<b。那么a+c<b+c(或ac<bc;如果a>b,那么a+c>b+c(或ac>bc)。师:对a和b有什么要求吗?对c有什么要求?生:没有什么要求。师:哪位同学来回答第二、三条性质?生甲:如果a<b,且c>0,那么ac<bc(或 );如果a>b,且c>0,那么ac>bc(或
标签:
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系邮箱:yuname@163.com 我们将配合处理!
原文地址:数学教案_不等式基本性质_教学教案发布于2021-10-22