教学目标

  (1)掌握复数加法与减法运算法则,能熟练地进行加、减法运算;

  (2)理解并掌握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;

  (3)能初步运用复平面两点间的距离公式解决有关问题;

  (4)通过学习平行四边形法则和三角形法,培养学生的数形结合的数学思想;

  (5)通过本节内容的学习,培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).


教学建议

一、知识结构

二、重点、难点分析

  本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不容易接受。

三、教学建议

  (1)在复数的加法与减法中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:时,与实数加法法则一致;验证实数加法运算律在复数集中仍然成立;符合向量加法的平行四边形法则.
  2)复数加法的向量运算讲解设,画出向量后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量),画出向量后,问与它对应的复数是什么,即求点Z的坐标ORRZ(证法如教材所示).
  (3)向学生介绍复数加法的三角形法则.讲过复数加法可按向量加法的平行四边形法则来进行后,可以指出向量加法还可按三角形法则来进行:如教材中图8_52)所示,求的和,可以看作是求的和.这时先画出第一个向量,再以的终点为起点画出第二个向量,那么,由第一个向量起点O指向第二个向量终点Z的向量,就是这两个向量的和向量.
  4)向学生指出复数加法的三角形法则的好处.向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释容易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便.
  5)讲解了教材例2后,应强调(注意:这里是起点,是终点)就是同复数_对应的向量.点之间的距离

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:复数的加法与减法高中三年级教案发布于2021-10-22

课件推荐