一、教学目标

  1.掌握一元二次方程根与系数的关系式,能运用它由已知一元二次方程的一个根求出另一个根与未知系数;

  2.通过根与系数的教学,进一步培养学生分析、观察、归纳的能力和推理论证的能力;

  3.通过本节课的教学,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。

  教学重点和难点:

  二、重点・难点・疑点及解决办法

  1.教学重点:根与系数的关系及其推导。

  2.教学难点:正确理解根与系数的关系。

  3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系。

  4.解决办法;在实数范围内运用韦达定理,必须注意这个前提条件,而应用判别式的前提条件是方程必须是一元二次方程,即二次项系数,因此,解题时,要根据题目分析题中有没有隐含条件

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)写出一元二次方程的一般式和求根公式。

  (2)解方程①,②

  观察、思考两根和、两根积与系数的关系。

  在教师的引导和点拨下,由沉重得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?

  2.推导一元二次方程两根和与两根积和系数的关系。

  设是方程的两个根。

  ∴ 

  ∴
    

    

    以上一名学生板书,其他学生在练习本上推导。

  由此得出,一元二次方程的根与系数的关系。(一元二次方程两根和与两根积与系数的关系)

  结论1.如果的两个根是,那么

  如果把方程变形为

  我们就可把它写成

  的形式,其中。从而得出:

  结论2.如果方程的两个根是,那么

  结论1具有一般形式,结论2有时给研究问题带来方便。

  练习1.(口答)下列方程中,两根的和与两根的积各是多少?

  (1);(2);(3)

  (4);(5);(6)

  此组练习的目的是更加熟练掌握根与系数的关系。

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:一元二次方程的根与系数的关系(一)初中三年级教案发布于2021-10-22

课件推荐