1、教材分析
(1)知识结构
(2)重点、难点分析
重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.
难点:①圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.
2、教法建议
本节内容需要4课时
第一课时:圆的定义和点和圆的位置关系
(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看
(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.
第二课时:圆的有关概念
(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;
(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.
第三、四课时:点的轨迹
条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.
教学目标:
1、理解圆的描述性定义,了解用集合的观点对圆的定义;
2、理解点和圆的位置关系和确定圆的条件;
3、培养学生通过动手实践发现问题的能力;
4、渗透“观察→分析→归纳→概括”的数学思想方法.
教学重点:点和圆的关系
教学难点:以点的集合定义圆所具备的两个条件
教学方法:自主探讨式
教学过程设计(总框架):
一、创设情境,开展学习活动
1、让学生画圆、描述、交流,得出圆的第一定义:
定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.
2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.
从旧知识中发现新问题
观察:
共性:这些点到O点的距离相等
想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?
(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);
(2) 到定点距离等于定长的点都在圆上.
定义2:圆是到定点距离等于定长的点的集合.
3、点和圆的位置关系
问题三:点和圆的位置关系怎样?(学生自主完成得出结论)
如果圆的半径为r,点到圆心的距离为d,则:
点在圆上d=r;
点在圆内d<r;
点在圆外d>r.
“数”“形”
二、例题分析,变式练习
练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.
例1求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.
已知(略)
求证(略)
分析:四边形ABCD是矩形
A=OC,OB=OD;AC=BD
OA=OC=OB=OD
要证A、B、C、D4个点在以O为圆心的圆上
证明:∵四边形ABCD是矩形
∴OA=OC,OB=OD;AC=BD
∴OA=OC=OB=OD
∴A、B、C、D4个点在以O为圆心,OA为半径的圆上.
符号“”的应用(要求学生了解)
证明:四边形ABCD是矩形
OA=OC=OB=OD
A、B、C、D4个点在以O为圆心,OA为半径的圆上.
小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.
问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)
练习1求证:菱形各边的中点在同一个圆上.
(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)
练习2设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.
(1)和点A的距离等于2cm的点的集合;
(2)和点B的距离等于2cm的点的集合;
(3)和点A,B的距离都等于2cm的点的集合;
(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)
三、课堂小结
问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:
(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;
(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;
(3)注重对数学能力的培养
四、作业82页2、3、4.
教学目标
1、使学生理解弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判断真假命题。
2、逐步培养学生阅读教材、亲自动手实践,总结出新概念的能力;进一步指导学
生观察、比较、分析、概括知识的能力。
3、通过动手、动脑的全过程,调动学生主动学习的积极性,使学生从积极主动获得知识。
教学重点、难点和疑点
1、重点:理解圆的有关概念.
2、难点:对“等圆”、“等弧”的定义中的“互相重合”这一特征的理解.
3、疑点:学生容易把长度相等的两条弧看成是等弧。让学生阅读教材、理解、交流和与教师对话交流中排除疑难。
教学过程设计:
(一)阅读、理解
重点概念:
1、弦:连结圆上任意两点的线段叫做弦.
2、直径:经过圆心的弦是直径.
3、圆弧:圆上任意两点间的部分叫做圆弧.简称弧.
半圆弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;
优弧:大于半圆的弧叫优弧;
劣弧:小于半圆的弧叫做劣弧.
4、弓形:由弦及其所对的弧组成的图形叫做弓形.
5、同心圆:即圆心相同,半径不相等的两个圆叫做同心圆.
6、等圆:能够重合的两个圆叫做等圆.
7、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.
(二)小组交流、师生对话
问题:
1、一个圆有多少条弦?最长的弦是什么?
2、弧分为哪几种?怎样表示?
3、弓形与弦有什么区别?在一个圆中一条弦能得到几个弓形?
4、在等圆、等弧中,“互相重合”是什么含义?
(通过问题,使学生与学生,学生与老师进行交流、学习,加深对概念的理解,排除疑难)
(三)概念辨析:
判断题目:
(1)直径是弦() (2)弦是直径()
(3)半圆是弧() (4)弧是半圆()
(5)长度相等的两段弧是等弧() (6)等弧的长度相等()
(7)两个劣弧之和等于半圆() (8)半径相等的两个半圆是等弧()
(主要理解以下概念:(1)弦与直径;(2)弧与半圆;(3)同心圆、等圆指两个图形;(4)等圆、等弧是互相重合得到,等弧的条件作用.)
(四)应用、练习
例1、已知:如图,AB、CB为⊙O的两条弦,试写出图中的所有弧.
解:一共有6条弧.、、、、、.
(目的:让学生会表示弧,并加深理解优弧和劣弧的概念)
例2、已知:如图,在⊙O中,AB、CD为直径.求证:AD∥BC.
(由学生分析,学生写出证明过程,学生纠正存在问题.锻炼学生动口、动脑、动手实践能力,调动学生主动学习的积极性,使学生从积极主动获得知识.)
巩固练习:
教材P<
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!
原文地址:圆_教学教案发布于2021-10-22