素质教育目标
(一)知识教学点
1.使学生了解圆柱的特征,了解圆柱的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆柱的侧面展开图是矩形.
2.使学生会计算圆柱的侧面积或全面积.
(二)能力训练点
1.通过圆柱形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;
2.通过圆柱侧面积的计算,培养学生正确、迅速的运算能力;
3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能
力.
(三)德育渗透点
1.通过圆柱的实物观察及有关概念的归纳向学生渗透“真知产生于实践”的观点;
2.通过应用圆柱展开图进行计算,解决实际问题,向学生渗透理论联系实际的观点;
3.通过圆柱侧面展开图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;
4.通过圆柱轴截面的教学,向学生渗透“抓主要矛盾、抓本质”的矛盾论的观点.
(四)美育渗透点
通过学习新知,使学生领略主体图形美与平面图形美的联系,提高学生对美的认识层次.
重点·难点·疑点及解决办法
1.重点:(1)圆柱的形成手段和圆柱的轴、母线、高等概念及其特征;
(2)会用展开图的面积公式计算圆柱的侧面积和全面积.
2.难点:对侧面积计算的理解.
3.疑点及解决方法:学生对圆柱侧面展开图的长为什么是底面圆的周长有疑虑,为此教学时用模型展开,加强直观性教学.
教学步骤
(一)明确目标
在小学,大家已学过圆柱,在生活中我们也常常遇到圆柱形的物体,涉及到圆柱形物体的侧面积和全面积的计算问题如何计算呢?这就是今天“7.21圆柱的侧面展开图”要研究的内容。
(二)整体感知
圆柱是生产、生活实际中常遇到的几何体,它是怎样形成的,如何计算它的表面积?为了回答上述问题,首先在小学已具有直观感知的基础上,用矩形旋转、运动的观点给出圆柱体有关的一系列概念,然后利用圆柱的模型将它的侧面展开,使学生认识到圆柱的侧面展开图是一个矩形,并能将这矩形的长与宽跟圆柱的高(或母线)、底面圆半径找到相互转化的对应关系.最后应用对应关系和面积公式进行计算.
〔三〕教学过程
(幻灯展示生活中常遇的圆柱形物体,如:油桶、铅笔、圆形柱子等),前面展示的物体都是圆柱.在小学,大家已学过圆柱,哪位同学能说出圆柱有哪些特征?(安排举手的学生回答:圆柱的两个底面都是圆面,这两个圆相等,侧面是曲面.)
(教师演示模型并讲解):大家观察矩形ABCD,绕直线AB旋转一周得到的图形是什么?(安排中下生回答:圆柱).大家再观察,圆柱的上、下底是由矩形的哪些线段旋转而成的?(安排中下生回答:上底是以A为圆心,AD旋转而成的,下底是以B为圆心,BC旋转而成的.)上、下底面圆为什么相等?(安排中下生回答:因矩形对边相等,所以上、下底半径相等,所以上、下底面圆相等.)大家再观察,圆柱的侧面是矩形ABCD的哪条线段旋转而成的?(安排中下生回答:侧面由DC旋转而成的.)
矩形ABCD绕直线AB旋转一周,直线用叫做圆柱的轴,CD叫做圆柱的母线.圆柱侧面上平行于轴的线段都叫做圆柱的母线.矩形的另一组对边AD、BC是上、下底面的半径。
圆柱一个底面上任意一点到另一底面的垂线段叫做圆柱的高,哪位同学发现圆柱的母线与高有什么数量关系?(安排中下生回答:相等.)哪位同学发现圆柱上、下底面圆有什么位置关系?(安排中下生回答:平行)A、B是两底面的圆心,直线AB是轴.哪位同学能叙述圆柱的轴的这一条性质?(安排中等生回答:圆柱的轴通过上、下底面的圆心)哪位同学能按轴、母线、底面的顺序归纳有关圆柱的性质?(安排中上学生回答:圆柱的轴通过上、下底面的圆心,且垂直于上、下底,圆柱的母线平行于轴且长都相等,等于圆柱的高,圆柱的底面圆平行且相等.)
(教师边演示模型,边启发提问):现在我把圆柱的侧面沿它的一条母线剪开,展在一个平面上,观察这个侧面展开图是什么图形?(安排中下生回答,短形)这个圆柱展开图――矩形的两边分别是圆柱中的什么线段?(安排中下生回答:一边是圆柱的母线,一边是圆柱底面圆的周长).大家想想矩形面积公式是什么?哪位同学能归纳圆柱的面积公式?(安排中下生回答:底面圆周长×圆柱母线)大家知道圆柱的母线与高相等,所以圆柱的面积公式还可怎样表示?(安排中下生回答:)
幻灯展示[例1] 如图,把一个圆柱形木块沿它的轴剖开,得矩形ABCD.已知,求这个圆柱形木块的表面积(精确到).
矩形的AD边是圆柱底面圆的什么?(安排中下生回答:直径.)题目中的哪句话暗示了AD是直径?(安排中上生回答:第一句,“把一个圆柱形木块沿它的轴剖开,得矩形ABCD”.因圆柱轴过底面圆的圆心,矩形过轴则意味AD过底面圆圆心,所以AD是圆柱底面圆直径.)cm是告诉了圆柱的什么线段等于30cm?(安排中下生回答:圆柱的高等于30cm)什么是圆柱的表面积?哪位同学知道?(安排中上生回答:圆柱侧面积与两底面圆面积的和.)同学们请完成这道应用题.(安排一中上生上黑板做题,其余在练习本做)
解:AD是圆柱底面的直径,AB是圆柱母线,设圆柱的表面积为S,则
答:这个圆柱形木块的表面积约为.
幻灯展示[例2]用一张面积为的正方形硬纸片围成一个圆柱的侧面,求这个圆柱的底面直径(精确到0.1cm).
请同学们任拿一正方形纸片围围看.哪位同学发现正方形相邻两边,一边是圆柱的什么线段,另一边是圆柱底面圆的什么?(安排中下生回答:一边是母线,另一边是底面圆周长.)
此题要求的是底面圆直径,所以只要求出正方形的什么即可?(安排中下生回答:边长.)边长可求吗:(安排中下生回答:可求,因为已知中给了正方形的面积.)
请同学们完成此题.(安排一中等生上黑板完成,其余在练习本上完成)
解:设正方形边长为x,圆柱底面直径为d.
则,依题意(cm)
答:这个圆柱的底面的直径约为9.6cm.
(四)总结、扩展
本节课学习了圆柱的形成、圆柱的概念、圆柱的性质、圆柱的侧面展开图及其面积计算.
然后按总结顺序;依次提问学生,此过程应重点提问中下生.
布置作业
教材P.187练习1、2;P.192中2、3、4。
九、板书设计
素质教育目标
(一)知识教育点
1.使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形。
2.使学生会计算圆锥的侧面积或全面积。
(二)能力训练点
1.通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;
2.通过圆锥的面积计算,培养学生正确迅速的运算能力;
3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能
力.
(三)德育渗透点
1.通过圆锥的实物观察及有关概念的归纳向学生渗透“实践出真知”的观念;
2.通过应用圆锥展示图的计算解决实际问题,向学生渗透理论联系实际的观点;
3.通过圆锥侧面展示图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;
4.通过圆锥轴截面的教学,向学生渗透“抓主要矛盾,抓本质”的矛盾论的观点.
(四)美育渗透点
通过学习新知,使学生进一步完整对几何美的认识,提高美育层次.
重点·难点·疑点及解决办法
1.重点:(1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;
(2)会进行圆锥侧面展开图的计算,计算圆锥的表面积.
2.难点:准确进行圆锥有关数据与展开图有关数据的转化.
3.疑点及解决方法:由于学生空间想象能力较弱,对圆锥的侧面展开图是扇形,用扇形一定可以围成一个圆锥的侧面有疑惑,为此安排学生课前或课上或课下自己动手剪剪看或围围看,通过实践解决疑点.
教学步骤
(一)明确目标
在小学,同学们除了学习圆柱之外还学习了一个几何体――圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容.
(二)整体感如
和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!
原文地址:数学教案_圆柱和圆锥的侧面展开图_教学教案发布于2021-10-22