锐角的三角比

   正切和余切

    

一、           教学目标:

1、理解锐角的正切、余切概念,能正确使用锐角的正切、余切的符号语言。

2、通过探究活动,培养学生观察、分析问题,归纳、总结知识的能力;通过题目的变式,培养用转化思想解决数学问题的能力;通过不同题型的训练,提高学生的通试能力;通过探索题的教学,培养学生的创新意识。

3、通过不同题型的训练,培养学生的数学学习素养,通过学习形式的变换,孕育学生的品质。

4、培养学生间良好的互动协作精神和对知识强烈的求知欲。

二、           教学设计的指导思想:

贯彻“教为主导、学为主体、练为主线”的原则,引导学生自始至终地参与学习的全过程,让学生在探索过程中学得愉快、扎实、灵活,学会学习,发展能力。

三、           重、难点及教学策略:

重点:锐角的正切、余切概念,探究能力的培养

难点:理解一个锐角确定的直角三角形的两边的比是一个确定的值。

策略:突出重点、突破难点。

四、           教学准备:

U盘,电脑,一副三角板,一块三角形模型,网格纸

五、           教学环节的流程简图:

    创设问题情境――→问题的研究 ――→讲授新课――→归纳小结及布置作业

六、           教学过程:

一)           创设问题情境:

1、引领练习:

①   在Rt△ABC中,∠C=90°,当∠A=45°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

②   在Rt△ABC中,∠C=90°,当∠A=30°时,

随着三角形的边长的放大或缩小时,上面的比值是否发生变化?

 

2、提出问题:

在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值是否发生变化?

二)           问题的研究:

1、几何画板动画演示:

2、运用定理证明:

得出结论:在Rt△ABC中,∠C=90°,一般情况下,

当∠A的大小确定,三角形的边长的放大或缩小时,上面的比值不变。

三)           讲授新课:

课题:29.1 正切和余切

1、基本概念:

①   在Rt△ABC中,∠C=90°,

 正切:tgA==

(tangent)(tanA)

           (tg∠BAC

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:数学教案_正切和余切_教学教案发布于2021-10-22

课件推荐