第三单元多边形面积的计算               1·平行四边形面积的计算

课题一:平行四边形面积的计算

教学内容:教科书第70页一第72页的内容,完成练习十七的第l~3题。

教学目的:1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

         2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

教学难点:通过操作和对图形的观察、比较,发展学生的空间观念。

教具准备:参照教科书第70页的方格纸,投影片;

教学过程:一、复习

         1.出示方格纸上画的平行四边形。提问:方格纸上面的是什么图形?什么叫平行四边形?它有什么特征?

         2·让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

          教师:今天我们就来学习平行四边形面积的计算方法。

板书课题:平行四边形的面积

         二、新课

        1.用数方格的方法计算平行四边形的面积。

        (1)我们在计算长方形的面积时,曾经用数方格的方法来计算它的面积,现在我们学习平行四边形面积的计算,也先用数方格的方法数一数它的面积是多少。请打开教科书,看第70页上边的平行四边形图,每一个方格表示一平方厘米,自己数一数是多少平方厘米?

           请同学们认真观察一下,平行四边形在方格纸上出现了不满一格的,该怎么数呢?(可以都按半格计算。)然后指名说出数得的结果,并说一说是怎样数的。

        (2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

        (3)比较平行四边形和长方形。

提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?

             启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的党分别相等,它们的面积也相等。

(4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?

 2.通过操作总结平行四边形面积的计算公式。

(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前面演示。

(2)教师示范把平行四边形转化成长方形的过程。

    刚才我发现有的同学把平行四边形转化成长方形时,把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。

   ①先沿着平行四边形的高剪下左边的直角三角形。

   ②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

   ③移动一段后,左手改扶梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

    请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)

(3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较)

   ①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?

   ②这个长方形的长与平行四边形的底有什么样的关系?

   ③这个长方形的宽与平行四边形的高有什么样的关系,

   教师归纳整理:任意一个平行四边形都可以转化成~个长方形,它的长、宽分别和原来的平行四边形的底、高相等。它的面积和原来的平行四边形的面积也相等。

(4)引导学生总结平行四边形面积的计算公式。

   这个长方形的面积怎么求?(指名回答后,在长方形下面板书:长方形的面积=长*宽)

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:数学教案_多边形面积的计算_教学教案发布于2021-10-22

课件推荐