教学目标

  1.使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法.

  2.培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念.

  教学重点

  表面积的意义.

  教学难点

  长方体表面积的计算方法.

  教学过程

  一、复习准备.

  1、说出长方形面积的计算公式.

  2、看图回答.

  (1)指出这个长方体的长、宽、高各是多少?

    (2)哪些面的面积相等?

  (3)填空.

  这个长方体上、下两个面的长是()宽是().

  左、右两个面的长是()宽是().

  前、后两个面的长是()宽是().

  3、想一想.

  长方体和正方体都有几个面?(6个面)

  二、揭示课题.

  今天这节课我们就来学习和研究有关这6个面的一些知识.

  三、教学新课.

  (一)长、正方体表面积的意义.

  1.老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、

  “左”、“右”、“前”、“后”标在6个面上.

  2.沿着长方体和正方体的棱剪开并展平.(老师先示范,学生再做)

  3.你知道长方体或者正方体6个面的总面积叫做它的什么吗?

  教师明确:长方体或者正方体6个面的总面积,叫做它的表面积.

  (板书:长方体和正方体的表面积.)

  (二)长方体表面积的计算方法.

  例1.做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?

  1.这题的问题,实际上就是要我们求什么?

  2.长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?

  3.学生分组讨论.

  解法(一)

  6×5×2+6×4×2+5×4×2

  =60+48+40

  =148(平方厘米)

  解法(二)

  (6×5+6×4+5×4)×2

  =(30+24+20)×2

  =74×2

  =148(平方厘米)

  4.比较上面两种解答方法有什么不同?它们之间有什么联系?

  解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和.解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二).

  四、巩固练习.

  1.一个长方体长4米,宽3米,高2.5米.它的表面积是多少平方米?(用两种方法计算)

  2.一个长方体铁盒,长18厘米,宽15厘米,高12厘米.做这个铁盒至少要用多少平方厘米的铁皮?

  五、课堂小结.

  通过解答例1和做一做,你发现长方体表面积的计算方法吗?

  结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2

  =(长×宽+长×高+宽×高)×2

  六、课后作业.

  1.一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢? 

  2.一个长方体的形状大小如下图.

  (1)它上、下两个面的面积分别是多少平方分米?

  (2)它前、后两个面的面积分别是多少平方分米?

  (3)它左、右两个面的面积分别是多少平方分米?

  七、板书设计

长方体和正方体的表面积

  长方体或者正方体6个面的总面积,叫做它的表面积.

  例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?

  

  答:至少要用148平方厘米的硬纸板.

 

探究活动


小小设计师

  活动目的

  1、理解正方体表面积的意义.

  2、发展学生的空间观念.

  活动形式

  每4名学生为一组,分小组设计.

  活动题目

  纸箱厂要用硬纸板制作立方体.用下面的六个正方形连接在一起,组成的平面图形经折叠后正好能构成立方体,这样的图形我们就叫立方体的表面展开图.请你设计不同的立方体表面展开图.

  参考答案

  在立方体展开图的设计中,为了使图形既不重复又不遗漏,就需要进行适当的分类.我们称立方体展开图中最长的一条为主干,这一条如果由四个正方形组成,就称主干为四方连,同样主干有三方连,二方连等.这样,我们把展开图分成以下几类.

  (1)主干为四方连.

  (2)主干为三方连.

  (3)主干为二方连.

  【思考】立方体展开图中是否有主干为五方连的?



数学教案_长方体和正方体的表面积一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:数学教案_长方体和正方体的表面积_教学教案发布于2021-10-22

课件推荐