教学目标


  (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;
  (2)掌握用比较法、综合法和分析法来证简单的不等式;
  (3)能灵活根据题目选择适当地证明方法来证不等式;
  (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力;
  (6)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力;
  (7)通过组织学生对不等式证明方法的意义和应用的参与,培养学生勤于思考、善于思考的良好学习习惯.

教学建议

(一)教材分析

  1.知识结构

  

  2.重点、难点分析

  重点:不等式证明的主要方法的意义和应用;

  难点:①理解分析法与综合法在推理方向上是相反的;

  ②综合性问题选择适当的证明方法.

  (1)不等式证明的意义

  不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.

  (2)比较法证明不等式的分析

  ①在证明不等式的各种方法中,比较法是最基本、最重要的方法.

  ②证明不等式的比较法,有求差比较法和求商比较法两种途径.

  由于,因此,证明,可转化为证明与之等价的.这种证法就是求差比较法.

  由于当时,,因此,证明可以转化为证明与之等价的.这种证法就是求商比较法,使用求商比较法证明不等式时,一定要注意的前提条件.

  ③求差比较法的基本步骤是:“作差――变形――断号”.

  其中,作差是依据,变形是手段,判断符号才是目的.

  变形的目的全在于判断差的符号,而不必考虑差值是多少.

  变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式.或者变形为一个分式,或者变形为几个因式的积的形式等.  总之.能够判断出差的符号是正或负即可.

  ④作商比较法的基本步骤是:“作商――变形――判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明.

  (3)综合法证明不等式的分析

  ①利用某些已经证明过的不等式和不等式的性质推倒出所要证明的不等式成立,这种证明方法通常叫做综合法.

  ②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列的推出变换,推倒出求证的不等式.

  ③综合法证明不等式的逻辑关系是:

(已知)(逐步推演不等式成立的必要条件)(结论)

  ④利用综合法由因导果证明不等式,就要揭示出条件与结论之间的因果关系,为此要着力分析已知与求证之间的差异和联系、不等式左右两端的差异和联系,在分析所证不等式左右两端的差异后,合理应用已知条件,进行有效的变换是证明不等式的关键.

  (4)分析法证明不等式的分析

  ①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.

  有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.

  ②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.

  ③用分析法证明不等式的逻辑关系是:

(已知)(逐步推演不等式成立的必要条件)(结论)

  ④分析法是教学中的一个难点,一是难在初学时不易理解它的本质是从结论分析出使结论成立的“充分”条件,二是不易正确使用连接有关(分析推理)步骤的关键词.如“为了证明”“只需证明”“即”以及“假定……成立”等.

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:不等式的证明(一)高中二年级教案发布于2021-10-22

课件推荐