教学内容:九年义务教育六年制数学第九册(人教版)第58――59页。

教学目标: 1、使学生初步理解相遇问题的意义。

           2、使学生会分析相遇问题的数量关系和解题方法。

           3、培养学生初步逻辑思维能力。

教学重点:相遇问题中数量关系的理解和解题思路的分析。

教学难点:解答问题时对速度和的理解和运用。

教具准备:演示软件、实物投影机、幻灯机。

教学过程:
开场白:
同学们,过去我们已经学过一些有关行程问题的知识,今天,我们要在过去的知识基础上,把这个问题作进一步的研究,为更好地掌握新知识,现在我们把一些相关知识进行复习。
一、复习铺垫: 
口答:

1、张华每分钟走65米,走了4分钟,一共走了多少米?

                  65×4=260(米)

提问:为什么这样求?谁会用一个数量关系式表示?

在学生回答的同时板书:速度×时间=路程。并由学生说明:张华行走的速度是每分钟走65米,时间是4分钟,求一共走多少米?就是求张华所走的路程。

2、李诚每分钟走70米,走了4钟,                   ?

  由学生补充问题并进行计算。

二、新授:

    1、导入新课:刚才我们复习了一般的求路程的行程应用题,它是由一个物体运动完成的。下面我们研究两个物体运动的行程应用题。

    2、出示准备题:

    ①读题看演示,初步理解题意。

    问:题中告诉我们,张华和李诚是怎样出发的?他们行走的方向又是怎样?(两人同时从家里出发,向对方走去)

    板书:两地  同时出发  相向而行

    ②边演示边带学生填写P58表格的数据,并分析数量关系。

    这是他们两人走的时间和路程的变化情况表。我们看看1分钟的情况(演示1分钟的情况)教师问:张华1分钟走60米,李诚1分钟走70米,那么两人所走路程的和是多少?你是怎样算的?现在两人的距离是多少?怎样计算?下面请同学们按表中的四个要求填写2分、3分的路程变化情况。

    学生翻开课本第58页填写。(教师巡视)

    师生继续填写完这个表格,边演示边让学生回答2分、3分时的情况。填写完后,教师指表的第4列问:纵观此列,每经过1分钟,两人之间的距离有什么变化?(缩短了1个60+70米)当两人距离为0米时,说明两人相遇了,这时他们用的时间都是3分钟。板书:相遇。问:相遇时,两人所走路程的和与两家的距离有什么关系?(正好相等)。学生回答后板书:两人所走路程的和=两地间的距离。

    3、小结并揭示课题

像这样,两人从两地同时出发,相向而行,最后相遇,他们所走路程之和正好等于两地间的距离。我们称它为相遇问题。现在我们就学习解答相遇求路程的方法。板书课题:相遇应用题。

    4、讲授例5。

    ①出示例5,教师读题,学生说出已知条件和问题。

    问:小强和小丽是怎样运动的?(两人同时从自己家里走向学校)也就是从两地同时出发,相向而行,经过4分,两人怎样?(相遇在校门口)

    ②启发学生学习第一种解法

演示后提问: a、小强小丽走的路程各是哪一段?用色段表示。

            b、两人4分所走路程的和与两家相距的米数有什么关系?(正好相等)
            c 、要求两家相距多少米?可先求什么?(先求两人到校时各自走的路程)再怎样?(将它们合起来)就得出时各自走的路程)再怎样?(将它们合起来)就得出两家相距的米数。

     指一名学生口述,教师板书:65×4+70×4

                            =260+280

                            =540(米)

    问:65×4和70×4分别表示什么?为什么要相加?

    ③启发学生学习第二种解法。

    问:这道题还有别的解法吗?让学生列式计算。

    指一名学生口述,教师板书:(65+70)×4

                           =135×4

                           =540(米)

    问:65+70求出什么?乘以4表示什么意思?请讲出你的解题思路。

相遇时,两人是否一共走了4个65+70米的路程呢?我们演示来验证一下。(演示)

    ④小结:相遇求路程的应用题通常有两种解法:一种是先求出两个物体各自走的路程再将它们合起来求得总路程,另一种是先求每分钟两人所走的路程的和,即是两人的速度和,再乘以相遇时间,就等于总路程。边说边板书:速度和×相遇时间=总路程,学生齐读关系式。

⑤学生看第58页的例5。

三、巩固练习:

    1.志明和小龙同时从两地对面走来,志明每分钟走54米,小龙每分钟走52米,经过5分两人相遇,两地相距多少米?(用两种方法解答)

    学生读题后,独立完成,教师巡视,订正答案。

2.两列火车从两个车站同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。两个车站之间的铁路长多少千米?

    让学生自选一种方法解答。

    3.两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?

    出示题目,请一名学生读题,演示后由学生独立完成。

    提问:两辆汽车同时从一个地方向相反的方向开出,也就说明两辆汽车背向而行,两辆汽车开出后有没有相遇?(没有)求经过3小时,两车相距多少千米?能用相遇问题的解法吗?(能)为什么?(因为甲乙两车每走1小时,两车之间的距离就拉开44.5+38.5千米的距离,3小时后,两车就拉开3个44.5+38.5千米的距离,也就是两车相距的米数。)

    小结:当两个物体同时从一个地方背向而行,它们的结果是相距,两个物体所走的路程的和等于两地间的距离,同样可以用速度和乘以经过时间,求得相距路程。
                      
   4、思考题:甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地间的铁路长多少千米?

    出示题目,全班读题,演示后让学生独立完成。

    订正时,师说:求两地间的铁路长多少千米?可以把铁路分为两段,一段是甲开出1小时单独行驶的路程,另一段是两车2小时共同行驶的路程。

    还有不同的解法吗?师生共同分析不同解法。

    引深:如果甲车开出后2小时,乙车才开出,又该怎样列式呢?指一名学生列式。

四、课堂总结:

这节课我们学习了两个物体相向运动的行程问题,其中求路程的解答方法通常有两种:一是先求出两个物体各自走的路程再将它们合起来求得总路程;二是用速度和乘以相遇时间得总路程。

五、作业:

P61第1题,P62第12题。


相遇应用题的教学设计一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:相遇应用题的教学设计_教学教案发布于2021-10-22

课件推荐