一、教学目标
1.掌握二次根式的混合运算.
2.掌握混合运算的应用.
3.通过二次根式的混合运算,培养学生的运算能力.
4.通过混合运算知识拓展,培养学生的探索精神
二、教学设计
小结、归纳、提高
三、重点、难点解决办法
1.教学重点:二次根式的混合运算.
2.教学难点:混合运算的应用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、多媒体
六、师生互动活动设计
复习小结,归纳整理,应用提高,以学生活动为主
七、教学过程
【例题】
例1 化简:
(1); (2).
解:(1)
.
(2)
.
说明:在计算过程中要注意各个式子的特点,能否约分或消项(第2小题)达到化简的目的,又要善于在规则允许的情况下可变换相邻项的位置,如,结果为_1,继续运算易出现符号上的差错,而把先变为,这样则为1,继续运算可避免错误.
例2 解下列方程(组):
(1)
(2)
(3)
解:(1)
.
(2)①×,得
③
②×,得
④
③_④,得
把代入①,得
解得.
∴ 是原方程组的解.
(3)由②,得
③
①×,得
④
③_④,得
把代入①,得
.
∴ 是原方程组的解.
例3 已知,,求的值.
解:.
.
,,
∴.
例4 已知,,求的值.
解:,.
.
(二)随堂练习
1.教材中P206中8.
2.解不等式:.
解:
∴.
3.已知,,求的值.
解:3.,或.
.
∴
.
4.已知,,求:的值.
解 4.
.
5.已知,求的值.
解5..
.
6.不求方根的值比较与的大小.
解6.∵
∴
∴
(三)总结、扩展
根据已知条件,求一个代数的值,要注意条件或代数式的化简,有时条件和要求的代数式都需要化简,当把条件化简后,代数式的化简要朝着条件化简的结果去化简.
(四)布置作业
教材中P207B组1、3和补充作业.
补充作业:
1.已知,求的值.
2.已知,,求的值.
(五)板书设计
1.例题…… 3.例题……
2.练习题 4.练习题
八、背景知识与课外阅读
1.方法 (1)应用二次根式乘法、除法和加减法运算法则.
(2)在实数范围内运算律仍适用.
(3)二次根式的乘法,与多项式的乘法相类似,遇运用多项式乘法公式时,也可以运用乘法公式.
2.顺序 先乘方、后乘除,最后加减,有括号的先算括号内的数.
二次根式的混合运算(第三课时)一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!
原文地址:二次根式的混合运算(第三课时)_教学教案发布于2021-10-22