一、素质教育目标

  (一)知识教学点

  1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

  2.了解四边形的不稳定性及它在实际生产,生活中的应用.

  (二)能力训练点

  1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

  2.通过推导四边形内角和定理,对学生渗透化归思想.

  3.会根据比较简单的条件画出指定的四边形.

  4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

  (三)德育渗透点

  使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

  (四)美育渗透点

  通过四边形内角和定理数学,渗透统一美,应用美.

  二、学法引导

  类比、观察、引导、讲解

  三、重点・难点・疑点及解决办法

  1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

  2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

  3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪、胶片、四边形模型、常用画图工具

  六、师生互动活动设计

  教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料.

第2课时

  七、教学步骤

  【复习提问】

 1.什么叫四边形?四边形的内角和定理是什么?

  2.如图4_9,求的度数(打出投影).

  【引入新课】

  前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题.

  【讲解新课】

  1.四边形的外角

  与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的.四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4_10.

  2.外角和定理

  例1 已知:如图4_11,四边形ABCD的四个内角分别为,每一个顶点处有一个外角,设它们分别为.

  求.

  (1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).

  (2)教给学生一组外角的画法――同向法.

  即按顺时针方向依次延长各边,如图4―11,或按逆时针方向依次延长各边,如图4_12,这四个外角和就是四边形的外角和.

  (3)利用每一个外角与其邻补角的关系及四边形内角和为360°.

  证得:

  360°

  外角和定理:四边形的外角和等于360°

  3.四边形的不稳定性

  ①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?

  (学生回答)

  ②若以为边作四边形ABCD.

  提示画法:①画任意小于平角的.

   ②在的两边上截取.

   ③分别以A,C为圆心,以12mm,18mm为半径画弧,两弧相交于D点.

   ④连结ADCD,四边形ABCD是所求作的四边形,如图4_13.

  大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为的大小不固定,所以四边形的形状不确定.

  ③(教师演示:用四根木条钉成如图4_14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性.

  教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:

  ①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变.②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材P125中2的第H问,为克服不稳定性提供了理论根据.

  (4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育.

  【总结、扩展】

  1.小结:

  (1)四边形外角概念、外角和定理.

  (2)四边形不稳定性的应用和克服不稳定性的理论根据.

  2.扩展:如图4_15,在四边形ABCD中,,求四边形ABCD的面积

  八、布置作业

  教材P128中4.

  九、板书设计

  十、随堂练习

  教材P124中1、2

  补充:(1)在四边形ABCD中,,是四边形的外角,且,则度.

  (2)在四边形ABCD中,若分别与相邻的外角的比是1:2:3:4,则度,度,度,度

  (3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角.


多边形的内角和教学设计示例3一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:多边形的内角和教学设计示例3_教学教案发布于2021-10-22

课件推荐