教学目标

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学重点

  使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.

  教学难点

  引导学生总结分数乘整数的计算法则.

  教学过程

  一、设疑激趣

  (一)下面各题怎样列式?你是怎样想的?

  5个12是多少?10个23是多少?25个70是多少?

  (概括:整数乘法表示求几个相同加数的和的简便运算)

  (二)计算下面各题,说说怎样算?

  ++=            ++=

  说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.

  同学之间交流想法:++==3× ×3=

  ×3这个算式表示什么?为什么可以这样计算?

  教师板书:++=×3=

  二、自主探索

  (一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

  1.读题,说说块是什么意思?

  2.根据已有的知识经验,自己列式计算

  三、交流、质疑

  (一)学生汇报,并说一说你是怎样想的?

  方法1:++===(块)

  方法2:×3=++====(块)

  (二)比较这两种方法,有什么联系和区别?

  联系:两种方法的结果是一样的.

  区别:一种方法是加法,另一种方法是乘法.

  教师板书:++=×3

  (三)为什么可以用乘法计算?

  加法表示3个相加,因为加数相同,写成乘法更简便.

  (四)×3表示什么?怎样计算?

  表示3个的和是多少?

  ++====,用分子2乘3的积做分子,分母不变.

  (五)提示:为计算方便,能约分的要先约分,然后再乘.

  四、归纳、概括:

  (一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?

  求几个相同加数的和的简便运算.

  (二)分数乘整数怎样计算?

  用分子和分母相乘的积做分子,分母不变

  五、巩固、发展

  (一)巩固意义

  1.改写算式

  +++=(  )×(  )

  +++++++=(  )×(  )

  2.只列式不计算:3个是多少? 5个是多少?

  (二)巩固法则

  1.计算(说一说怎样算)

  ×4     ×6     ×21    ×4    ×8

  思考:为什么先约分再相乘比较简便?

  2.应用题

  (1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至

  少需要多少包装纸?

  (2)美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画

  配上镜框,需要木条多少米?

  (三)对比练习

  1.一条路,每天修千米,4天修多少千米?

  2.一条路,每天修全路的,4天修全路的几分之几?

  六、课后作业

  (一)的3倍是多少?的10倍是多少?

  (二)一个正方形的边长是米,它的周长是多少米?

  (三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?

  七、板书设计

分数乘整数

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.

  例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?

  用加法算:++===(块)

  用乘法算:×3=++====(块)

  答:3人一共吃了块.

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.

  

  教学设计点评

  1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。

  2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。


分数乘整数一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!

声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益 请联系邮箱:yuname@163.com 我们将配合处理!

原文地址:分数乘整数_教学教案发布于2021-10-22

课件推荐