教学目标
1、使学生理解求圆锥体积的计算公式.
2、会运用公式计算圆锥的体积.
教学重点
圆锥体体积计算公式的推导过程.
教学难点
正确理解圆锥体积计算公式.
教学步骤
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式.
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5) 下载1下载2下载3下载4下载5
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的.
板书: 5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书: 6、思考:要求圆锥的体积,必须知道哪两个条件? 7、反馈练习 圆锥的底面积是5,高是3,体积是( ) 圆锥的底面积是10,高是9,体积是( )(二)教学例1 1、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少? 学生独立计算,集体订正. 板书: 答:这个零件的体积是76立方厘米. 2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少? 3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉) (1)已知圆锥的底面半径和高,求体积. (2)已知圆锥的底面直径和高,求体积. (3)已知圆锥的底面周长和高,求体积. 4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?(三)教学例2 1、例2 在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米.每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克) 思考:这道题已知什么?求什么? 要求小麦的重量,必须先求什么? 要求小麦的体积应怎么办? 这道题应先求什么?再求什么?最后求什么? 2、学生独立解答,集体订正. 板书:(1)麦堆底面积: =3.14×4 =12.56(平方米) (2)麦堆的体积: 12.56×1.2 =15.072(立方米) (3)小麦的重量: 735×15.072 =11077.92 ≈11078(千克) 答:这堆小麦大约重11078千克. 3、教学如何测量麦堆的底面直径和高. (1)启发学生根据自己的生活经验来讨论、谈想法. (2)教师补充介绍. a.测量麦堆的底面直径可以用绳子在麦堆底部圆周围圈一圈,量得麦堆的周长,再算直径.也可用两根竹竿平行地放在麦堆的两侧,量得两根竹竿的距离,就是麦堆的直径. b.测量麦堆的高,可用两根竹竿在麦堆旁边组成两个直角后量得.三、全课小结 通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)四、随堂练习 1、求下面各圆锥的体积. (1)底面面积是7.8平方米,高是1.8米. (2)底面半径是4厘米,高是21厘米. (3)底面直径是6分米,高是6分米. 2、计算并填表 3、判断对错,并说明理由. (1)圆柱的体积相当于圆锥体积的3倍.( ) (2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( ) (3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )五、布置作业 一堆煤成圆锥形,底面半径是1.5米,高是1.2米.这堆煤的体积有多少立方米?如果每立方米煤约重1.4吨,这堆煤约有多少吨?六、板书设计
数学教案_圆锥的体积一文由备课库www.beikeku.com搜集整理,版权归作者所有,转载请注明出处!
声明:有的资源均来自网络转载,版权归原作者所有,如有侵犯到您的权益
请联系邮箱:yuname@163.com 我们将配合处理!
原文地址:数学教案_圆锥的体积_教学教案发布于2021-10-22